Conjugacy classes of maximal cyclic subgroups

نویسندگان

چکیده

Abstract In this paper, we study the number of conjugacy classes maximal cyclic subgroups a finite group

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the type of conjugacy classes and the set of indices of maximal subgroups

‎Let $G$ be a finite group‎. ‎By $MT(G)=(m_1,cdots,m_k)$ we denote the type of‎ ‎conjugacy classes of maximal subgroups of $G$‎, ‎which implies that $G$ has exactly $k$ conjugacy classes of‎ ‎maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates‎ ‎of maximal subgroups of $G$‎, ‎where $m_1leqcdotsleq m_k$‎. ‎In this paper‎, ‎we‎ ‎give some new characterizations of finite groups by ...

متن کامل

Conjugacy Classes in Maximal Parabolic Subgroups of General Linear Groups

We compute conjugacy classes in maximal parabolic subgroups of the general linear group. This computation proceeds by reducing to a “matrix problem”. Such problems involve finding normal forms for matrices under a specified set of row and column operations. We solve the relevant matrix problem in small dimensional cases. This gives us all conjugacy classes in maximal parabolic subgroups over a ...

متن کامل

Counting Conjugacy Classes of Cyclic Subgroups for Fusion Systems

We give another proof of an observation of Thévenaz [4] and present a fusion system version of it. Namely, for a saturated fusion system F on a finite p-group S, we show that the number of the F-conjugacy classes of cyclic subgroups of S is equal to the rank of certain square matrices of numbers of orbits, coming from characteristic bisets, the characteristic idempotent and finite groups realiz...

متن کامل

Nilpotent groups with three conjugacy classes of non-normal subgroups

‎Let $G$ be a finite group and $nu(G)$ denote the number of conjugacy classes of non-normal subgroups of $G$‎. ‎In this paper‎, ‎all nilpotent groups $G$ with $nu(G)=3$ are classified‎.  

متن کامل

On conjugacy classes of maximal subgroups of finite simple groups, and a related zeta function

We prove that the number of conjugacy classes of maximal subgroups of bounded order in a finite group of Lie type of bounded rank is bounded. For exceptional groups this solves a longstanding open problem. The proof uses, among other tools, some methods from Geometric Invariant Theory. Using this result we provide a sharp bound for the total number of conjugacy classes of maximal subgroups of L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Group Theory

سال: 2023

ISSN: ['1435-4446', '1433-5883']

DOI: https://doi.org/10.1515/jgth-2022-0134